Matrix Factorizations Based on Induced Norms
نویسنده
چکیده
We decompose a matrix Y into a sum of rank one bilinear forms in a stepwise manner, by considering Y as a mapping from the finite dimensional space l r to the space l p . We provide transition formulas, and represent them in a duality diagram, thus generalizing the well known duality diagram in the french school of data analysis. As an application, we introduce a family of Euclidean multidimensional scaling models.
منابع مشابه
Riordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملMATRIX FACTORIZATIONS AND INTERTWINERS OF THE FUNDAMENTAL REPRESENTATIONS OF QUANTUM GROUP Uq(sln)
We want to construct a homological link invariant whose Euler characteristic is MOY polynomial as Khovanov and Rozansky constructed a categorification of HOMFLY polynomial. The present paper gives the first step to construct a categorification of MOY polynomial. For the essential colored planar diagrams with additional data which is a sequence naturally induced by coloring, we define matrix fac...
متن کاملSurvey on Probabilistic Models of Low-Rank Matrix Factorizations
Low-rank matrix factorizations such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF) are a large class of methods for pursuing the low-rank approximation of a given data matrix. The conventional factorization models are based on the assumption that the data matrices are contaminated stochastically by some type of noise. Thus t...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملGeneralized Matrix Factorizations as a Unifying Framework for Pattern Set Mining: Complexity Beyond Blocks
Matrix factorizations are a popular tool to mine regularities from data. There are many ways to interpret the factorizations, but one particularly suited for data mining utilizes the fact that a matrix product can be interpreted as a sum of rank-1 matrices. Then the factorization of a matrix becomes the task of finding a small number of rank-1 matrices, sum of which is a good representation of ...
متن کامل